Menu Close

Author: INHI KIM (page 12 of 18)

Dong’s confirmation

Research Group

Transport

Research Theme

Resilience, Infrastructure and Society

Summary

Although many strategies and policies have been advocated, either from the demand or supply aspect, to mitigate the traffic congestion, still, the problem remains to exist. A new perspective to visit the causes and to tackle this problem is urged. Extensive studies have revealed that the built environment can highly be associated with determining human spatial activities, especially automobile travel behaviors. Through travel behaviors, lead to the generation of traffic, which has an impact on traffic operation and control action. However, how the built environment directly influences the traffic performance (congestions and delays) have been rarely studied and lack of evidence.

In this context, this research aims to establish an in-depth understanding of the impacts of the built environment on traffic congestion at different spatial scales. Trying to answer the questions as 1) What built environment features are most relevant to the change of traffic congestion? 2) To what extent the change of the built environment features (by considering geographical scale) causes a difference in the traffic congestion level. 3) How can urban mobility and accessibility be optimized and enhanced via manipulating the design of the built environment? To address the above issues, the objectives of this research are 1) To synthesize the critical built environment indicators that hold accountable for the differences in traffic performance between areas; 2) To quantify the relationship of the built environment in raising the traffic congestion at different spatial scales; 3) To inform the built environment policy framework towards optimized transport planning and management .

By knowing this relationship, the outcome of this research can help guide the design of the urban/transportation planning policy for urban sprawl controls and mobility enhancement from the beginning design of the land use and the infrastructure implementation plaN.

For his presentation the video is below

https://youtu.be/BtofemdVzi0

 

Lilian’s progress review

Big congrats. Lilian has successfully passed the progress review with outstanding marks.

Please join to watch her seminar.

https://youtu.be/7y4TBdh8_6g

 

TUPA in 99th TRB

99th TRB conference paper acceptance

I am pleased that TUPA has made good outcomes at the 99th TRB conference.

  • Inferring The Optimal Number Of Dockless Shared Bike In A New Area By Applying The Gradient Boosting Decision Tree Model by Dong Xiao, Tianqi Gu, Yuanqiu Bao, and Inhi Kim
  • The  Use of Emerging  Virtual Reality Technology  in Road Safety Analysis: The Hook-Turn Case by Taeho Oh, Yanping Xu, Zhibin Li, and Inhi Kim
  • Short-Term Traffic Prediction Using A  Spatial-Temporal  CNN Model With Transfer Learning by Wang Bo, Hai, Vu, and Inhi Kim

 

Bo Wang’s confirmation

Congratulation on Bo’s confirmation. All the panels and the chair impressed Bo’s research progress. The presentation was also very comprehensive. If anyone needs the seminar in a video file please contact me. Well done Bo!!

 

Title: Short-term traffic state estimation and prediction based on spatiotemporal neural networks

Research Theme: Monitoring, Prediction and Protection

Group: Transport

Summary: Spatiotemporal neural networks (NN) models have recently achieved competitive results for short-term traffic prediction and achieved outstanding outcomes. However, two problems still require further study in terms of model performance and inner mechanism understanding: (1). The forecasting model affected by many aspects like model inputs, model structure, external factors, and optimisation function. How to design an appropriate framework for short-term traffic state prediction? (2). The existing related studies mainly use the knowledge and advantage from the neural network field, but how to incorporate transport domain knowledge with the above framework? Therefore, th e aims of this study are: (1) Presenting an overall framework from data management to model training for traffic network state estimation and prediction, which provides better forecasting results and APIs for other applications. (2) Understanding the relations of components inside the framework and improving it by integrating transport domain knowledge. The preliminary works of this study focus on the inputs and structure of NN-based model, which used the datasets of bike-sharing traffic network (New York and Suzhou cities) and highway traffic network (PeMS – Caltrans Performance Measurement System). The main outcomes are (1). The impact and inner relation of the external factors (discrete variables like weather, POI, and holidays) are studied. (2). A more accurate forecasting model based on 3D residual NN is presented, which learning the spatial-temporal features and being trained with traffic correlated input data with temporal autocorrelation. (3). The advantage of model fine-tun ing (a technique of transfer learning in the NN field) is studied with PeMS dataset, which has improved the model with limited training data. In the future work, more complex input and output data (network level) will be considered. Since traffic flow, density, and speed are essential factors in traffic flow theory; therefore, further studies will aim to integrate more domain knowledge to guide the model training. Transportation is fundamental to a thriving society. The results of short-term traffic forecasting affect both decision support of city planning and traffic management. The outcomes of this study provide a general framework of the NN-based traffic forecasting model for practice and a better understanding, which will benefit the short-term traffic forecasting related research and industry.

 

Bio: Bo Wang received the double M.S degree in transportation engineering from Monash University and Southeast University in 2018. He commenced his PhD at Monash University in 2018 under the supervision of Dr. Inhi Kim, Prof. Hai Vu and Dr. Chen Cai. His research interests include intelligent transport systems, deep neural networks and big data mining in transportation.

1st Joint workshop in Liverpool University, Suzhou

I am pleased to inform you that my phd student, Tianqi Gu won the best phd research award from the 1st Joint Workshop held in Xian-Liverpool University, Suzhou. Also our phd candidates (Taeho and Dong) made a wonderful presentation today.

Dr. Mike Ma gave an invited talk to the audience about smart operation of public transportation.

Xinyuan’s PhD graduation

 

1st Workshop for Sustainable Construction in Civil engineering

Local universities including, Liverpool University, Southeast university, Nanjing university, Tonji university and Monash university invites to the 1st workshop for sustainable construction in civil engineering on 6th June 2019.

Home

Faculty of Engineering Graduate Research International Travel Award

Big congrats for Wenhua’s  Faculty of Engineering Graduate Research International Travel Award!! Wenhua will visit Prof. Haris Koutsopoulos’s group at Northwest university, the US for 6 months. 

2019 Group BBQ